Login ¡¡ ¢· ¢¹ ¡¡ Mobile II
Hint Food ¸À°úÇâ Diet Health ºÒ·®Áö½Ä ÀÚ¿¬°úÇÐ My Book À¯Æ©ºê Frims ¿ø ·á Á¦ Ç° Update Site

¸ÀÀÇ Á¾·ù ¡í ¸Å¿î¸À ¡í ĸ»çÀ̽Å

Çâ½Å·á :  »çõÈÄÃß sanshool

Çâ½Å·áÀÇ Á¾·ù
- À°µÎ±¸ Nutmeg, mace
- ¸¶¶ó »çõÈÄÃß snashool

- ¿Â°¢ : Vanilloid receptor
- ĸ»çÀ̽Š: ¸Å¿î¸À ´ÜÀ§ : ½ºÄÚºô
- Âù¸À(³Ã¹Ì, Cooling) : ¸àÅç

 

»ç¶÷µéÀº Á¤¸» Áö·çÇÑ °ÍÀ» ½È¾îÇÑ´Ù. ±×·¡¼­ ¸ÀÀÇ ±âº»Àº ÀÚ±ØÀÌ´Ù. Ä£¼÷ÇÏ°í Àͼ÷ÇÏ°í ÁÁÀº ÀÚ±ØÀÌ¸é ¹Ù·Î ÁÁ¾ÆÇÏ°Ô µÇ°í, ÅëÁõÀÌ µÇ´Â Àڱصµ ¸ö¿¡ ³ª»ÚÁö ¾ÊÀ¸¸é À̳» ÀûÀÀÇÏ¿© ÁÁ¾ÆÇÏ°Ô µÈ´Ù. Çâ½Å·á´Â ÇâÀ¸·Î ÈÄ°¢À» ÀÚ±ØÇÒ »Ó ¾Æ´Ï¶ó ¿Âµµ°¨°¢À̳ª ÃË°¢À» ÀÚ±ØÇÏ¿© ¿ì¸®¿¡°Ô »õ·Î¿î ÀÚ±ØÀ» ÁØ´Ù. °íÃßÀÇ Ä¸»çÀ̽Å, °ÜÀÚ³ª ¿Í»çºñÀÇ isothiocyanate, ¸¶´ÃÀÇ ¾Ë¸®½Å, ¹ÚÇÏÀÇ ¸àÅçÀº ¿Âµµ¼ö¿ëü¸¦ ÀÚ±ØÇϴµ¥ ±¸Ã¼ÀûÀÎ ¼ö¿ëü°¡ ´Þ¶ó ±× ´À³¦ÀÌ ´Ù¸£´Ù.  ±×·±µ¥ ÃÖ±Ù Àα⸦ ¾ò°í ÀÖ´Â ¸¶¶óÀÇ  Sichuan pepper¿¡´Â ÈÄ°¢°ú ¿Âµµ°¨°¢ ¸»°íµµ Ãß°¡ÀûÀÎ ÀÚ±ØÀÌ ÀÖ´Ù. ¹Ù·Î ÃË°¢ÀÌ´Ù.
ÃÊÇÇ¿¡´Â ĸ»çÀ̽ÅÀÇ ¸Å¿î¸À°ú´Â ´Ù¸¥ '¾ó¾óÇÑ ¸À(¸¶Ø¦)'ÀÌ Àִµ¥ »ê¼î¿Ã(sanshool) ´öºÐÀÌ´Ù. ÃÊÇǸ¦ ¸¹ÀÌ »Ñ¸° À½½ÄÀ» ¸Ô´Ùº¸¸é ÀÔ¼úÀ̳ª Çô, ÀÔõÀåÀ» ºñ·ÔÇÑ ÀÔ¾È ¿©±âÀú±â°¡ Àú¸®°í ¾ó¾óÇÑ °É ´À³¥ ¼ö ÀÖ´Ù. ÀÔ¿¡´Â ¹Ì°¢, ¿Â°¢, ÃË°¢ µîÀÌ °°ÀÌ Àִµ¥ »ê¼î¿ÃÀº °¡º­¿î Á¢ÃËÀ» °¨°¢ÇÏ´Â ¼ö¿ëü( A¥â and D-hair neurons)¸¦ È°¼ºÈ­½ÃŲ´Ù. ¿Âµµ¼ö¿ëü°¡ ¿Âµµ¿¡¸¸ ¹ÝÀÀÇÏ¿©¾ß Çϴµ¥, ½Ç¼ö·Î ĸ»çÀ̽ſ¡µµ ¹ÝÀÀÇÏ´Â °Íó·³ ÃË°¢ÀÌ ½Ç¼ö·Î »ê¼î¿ÃÀ̶ó´Â È­Çй°¿¡µµ ¹ÝÀÀÇÏ´Â °ÍÀÌ´Ù. 2013³â ¿µ±¹ÀÇ À¯´Ï¹ö½ÃƼ Ä®¸®Áö ¿¬±¸ÆÀÀº »ê¼î¿Ã ¼ººÐÀ» ÀÔ¼ú¿¡ ¹ß¶úÀ» ¶§ ÃÊ´ç 50ȸ Áøµ¿ÇÏ´Â °Í°ú ºñ½ÁÇÑ ÀÚ±ØÀÌ ÀϾ´Â °ÍÀ» È®ÀÎÇϱ⵵ ÇÏ¿´´Ù.
»ç¶÷µéÀº ½Ã°£ÀÌ Áö³¯¼ö·Ï µ¿ÀÏÇÑ ÀÚ±ØÀ» Áö·çÇØÇÏ°í Á» ´õ °­ÇÑ ÀÚ±ØÀ» ¿øÇÏÁö¸¸ ´ÜÀÏÇÑ ÀÚ±ØÀÌ ³Ê¹« °­ÇÑ °Í¿¡´Â °ÅºÎ°¨ÀÌ ÀÖ´Ù. ¸¶¶ó¿¡´Â ¿ì¸®¿¡°Ô Àͼ÷ÇÑ ¿ÂµµÀÚ±Ø ¼ººÐµµ ÀÖÁö¸¸ ¾à°£ ´Ù¸¥ ÃË°¢ Àڱصµ ¸¶Á®ÀÖ´Ù. ´õ±¸³ª ÅëÁõÀÌ ¾Æ´Ñ ºÎµå·¯¿î ÃË°¢À» °¨°¢ÇÏ´Â ¼ö¿ëüÀÌ´Ù. ÀÌ°ÍÀÌ »õ·Î¿î ¸Å·ÂÀ¸·Î ´À²¸Áú ¼ö ÀÖ´Ù.  


Çâ½Å·áÀÇ ÀÏÁ¾À¸·Î ÇиíÀº Zanthoxylum piperitum. Á¦ÇÇ, ÁöÇÇ(°æ»óµµ), Á¨ÇÇ(Àü¶óµµ), Á¶ÇÇ(À̺Ï), ³²Ãß, ÃËÃʶó°íµµ ÇÑ´Ù. ¿µ¾î·Î´Â Sichuan pepper¶ó°í Çϴµ¥ ¾²ÃÓ ÈÄÃ߶ó´Â ¶æÀÌ´Ù. ÃÊÇdzª¹«´Â Áã¼ÕÀÌÇ®¸ñ ¿îÇâ°ú ÃÊÇdzª¹«¼Ó ³«¿±°ü¸ñÀÌ´Ù. ¿ø»êÁö°¡ Áß±¹ ¾²ÃÓ Áö¹æÀ̱⠶§¹®¿¡ ÃË¿¡¼­ ¿Â Çâ½Å·á¶ó´Â ¶æÀ¸·Î 'ÃËÃÊ'¶ó°í ºÎ¸£±âµµ ÇÑ´Ù. Áß±¹¿¡¼­ 'È­ÀÚ¿À'(ü£õ¡)¶ó°í ºÎ¸¥´Ù. »êÃÊ(Zanthoxylum schinifolium)ÇÏ°í´Â ģôÀ¸·Î, ½ÇÁ¦·Îµµ ¿­¸Å¸¸ º¸¸é ±×³ðÀÌ ±×³ð °°À» Á¤µµ. °Ô´Ù°¡ ÀϺ»¿¡¼­´Â ÃÊÇǸ¦ »êÃʶó ºÎ¸£±â ¶§¹®¿¡ ´õ¿í È¥µ¿µÇ¾î »ç¿ëµÇ°í ÀÖ´Ù. »êÃʷδ ±â¸§À» ¸¸µé ¼ö ÀÖÁö¸¸ ÃÊÇǷδ ±â¸§À» ¸¸µé ¼ö ¾ø´Ù. °¡½Ã°¡ ¸¶ÁÖ ³µ´ÂÁö, ¾Æ´ÑÁö·Î ±¸ºÐÀÌ °¡´ÉÇÏ´Ù.
ÃÊÇÇÀÇ ¸ÀÀº '¸Å¿î¸À'À̶ó±âº¸´Ù´Â '¾ó¾óÇÑ ¸À(¸¶Ø¦)'À̶ó°í ÇÑ´Ù. ¸¶ÆĵκÎÀÇ ´Ù¼¸ °¡Áö ¸À(¶ö¤ýÇâ¤ý»ö¤ýÅÁ¤ý¸¶) Áß '¸¶'°¡ ÃÊÇÇÀÇ ¾ó¾óÇÑ ¸À¾Ë °¡¸®Å°´Âµ¥, »ê¼î¿Ã(sanshool)ÀÌ ÁÖ ¿ä¼ÒÀÌ´Ù. ¸ÀÀº 'ºñ´©¸ÀÀÌ ³­´Ù'°í óÀ½ ¸Ô°Å³ª °ÅºÎ°¨ÀÌ µå´Â »ç¶÷µéÀº ±×·² Á¤µµÁö¸¸, º¸Åë '¾ó¾óÇÑ ¸À'À̶ó°í ¸»ÇÑ´Ù. ½ÇÁ¦·Î Á» ¸¹ÀÌ »Ñ¸° À½½ÄÀ» ¸Ô´Ùº¸¸é ÀÔ¼úÀ̳ª Çô, ÀÔõÀåÀ» ºñ·ÔÇÑ ÀÔ¾È ¿©±âÀú±â°¡ Àú¸®°í ¾ó¾óÇÑ °É ´À³¥ ¼ö ÀÖ´Ù. ¸¶ÆĵκΠÀÌ¿Ü¿¡µµ Áß±¹ »çõ ¿ä¸®¿¡ ƯÈ÷ ¸¹ÀÌ µé¾î°¡´Â Çâ½Å·áÀÌ´Ù.

ÃÊÇdzª¹«´Â ÁÖ·Î »êÁßÅÎÀ̳ª »ê°ñÂ¥±â¿¡¼­ ³ªÁö¸¸ »ê±â½¾Àº ¹°·ÐÀÌ°í ¹ç ÁÖº¯¿¡¼­µµ ÈçÇÏ°Ô ÀÚ¶õ´Ù. Å°´Â 3~5m·Î ÇåÄ¥ÇÏ°Ô ÀÚ¶ó°í, ÅÎÀÙÀÌ º¯ÇÑ 1§¯ Á¤µµ ÀÛÀº °¡½Ã°¡ ÀÙÀÚ·ç ¹Ø¿¡ 1½Ö¾¿ ¸¶ÁÖ ´Þ¸°´Ù. ¶Ç ÀÙÀº ¾î±ß³ª±â ÇÏ°í, ¾ÆÄ«½Ã¾Æó·³ ÀÙÁÙ±â Á¿쿡 ¿©·¯ ½ÖÀÇ ÁøÃÊ·Ï ÀÜÀÙÀÌ Â¦À» ÀÌ·ç¾î ´Þ¸®°í, ³¡ÀÚ¶ô¿¡ ÀÙ Çϳª ºÙ´Â ±êÅÐ ¸ð¾çÀÇ ÀÙ(Ȧ¼ö±ê²Ã°ãÀÙ)ÀÌ´Ù. ÀÜÀÙ(¼Ò¿±, á³ç¨)Àº ´Þ°¿ ¸ð¾çÀ¸·Î ±æÂëÇÑ ÀÙÁٱ⿡ 9~11À徿 ¾î±ß³ª°Ô ´Þ¸°´Ù. ÀÙÀÇ ¾Õ¸é °¡¿îµ¥¿¡ ³ë¶þ°í ¹ÝÅõ¸íÇÑ ±â¸§¹æ¿ï(À¯Àû, êúîÙ)ÀÌ ³ª¿À´Â °ËÀº ±â¸§ Á¡(À¯Á¡, êúïÇ)ÀÌ ÀÖ´Ù.

Á¦Çdzª¹«ÀÇ ¾î¸°ÀÙÀº µ¥Ãļ­ ¹¯Çô ¸Ô°Å³ª »ýä·Î °íÃßÀå¿¡ ¹Ú¾Æ Àå¾ÆÂ ´ã±×¸ç, ¿­¸Å²®ÁúÀº Çâ½Å·á(úÅãôÖù)·Î »ç¿ëÇÑ´Ù. ¿­¸Å²®ÁúÀ» ¡®Á¦ÇÇ¡¯¶ó°í ºÎ¸£´Âµ¥, ÀÌ°ÍÀ» Àß ¸»·Á Àý±¸Åë¿¡ Âö¾î¼­ º´¿¡ ´ã¾ÆµÎ°í Á¶±Ý¾¿ ¾²´Âµ¥ °¡·ç »óÅ·Π¿À·¡ ÀúÀåÇϸé Á¡Â÷ ¸Å¿î¸ÀÀ» ÀÒ°Ô µÇ¹Ç·Î ¿­¸Å·Î °£¼öÇß´Ù°¡ »ç¿ë Á÷Àü¿¡ °¥¾Æ ¾²´Â °ÍÀÌ ´õ ÁÁ´Ù(ÈÄÃßµµ ¸ÅÇÑ°¡ÁöÀÌ´Ù). ´ëÃæ´ëÃæ °ÅÄ¥°Ô °£ °¡·ç¸¦ Ãß¾îÅÁ¿¡ ³Ö¾î ºñ¸°³»¸¦ Àâ¾Æ ÁÖ°í, ¸Å¿îÅÁ¡¤±èÄ¡¡¤µÈÀåÂî°³¿¡µµ ³Ö¾î ¸Ô´Âµ¥, ¸ÅÄÞÇÑ ¸À°ú ÄÚ¸¦ Åå ½î´Â ¸Å¿î ÇâÀÎ »ê¼î¿Ã(sanshool)Àº Çô³¡ÀÌ ¾Æ¸° µí ¾ó¾óÇÑ ´À³¦À» ÁØ´Ù. Á¦ÇÇ¿¡´Â ±â¸§ ¼ººÐÀÌ 2~6% µé¾ú´Â µ¥, ±×Áß »ê¼î¿ÃÀÌ 8% Á¤µµ µé¾ú°í, °­ÇÏ°í ÀڱؼºÀÌ ÀÖ¾î ¹Ì°¢°ú ÈÄ°¢À» ¸¶ºñ½Ãų Á¤µµ´Ù.

Á¤À¯(ïñêú)¿¡¼­ ¾ò¾îÁö´Â Çâ±â ¼ººÐÀÎ ¸®¸ð³Ù(limonene, dl-dipentene), °Ô¶ó´Ï¿Ã(geraniol), ½ÃÆ®·Î³Ú¶ö(citronellal)°ú ¸Å¿î¸À ¼ººÐÀÎ »ê¼î¿Ã(sanshol), Å©»êÅå½Å(zanthoxyn)ÀÌ µé¾î ÀÖ´Ù. Å©»êÅå½ÅÀº ¸¶Ãë ¼ººÐÀÌ À־ »êÃʳª¹«ÀÙÀ» ÁþÂö¾î¼­ °³Ãµ¿¡ Ç®¸é ¹°°í±â°¡ °æ·ÃÀ¸·Î °¡»ç »óÅ°¡ µÇ´Â Á¤µµÀ̹ǷÎ, »êÃʳª ÃÊÇǸ¦ ³Ê¹« ¸¹ÀÌ ¸Ô´Â °ÍÀº ÁÁÁö ¾Ê´Ù. ¿­¸ÅÀÇ ¸Å¿î¸À ¼ººÐÀº »ì±Õ ÀÛ¿ëÀÌ ÀÖÀ¸¸ç ±¸Ãæ È¿°úµµ ÀÖ°í, Á¤À¯ ¼ººÐÀº »ìÃæ È¿°ú°¡ ÀÖ´Ù. ¾à¿ëÀº ¿­¸Å°¡ ÀÍ¾î °¥¶óÁú ¹«·Æ¿¡ äÃëÇÑ´Ù.

Çѹ濡¼­´Â ¿­¸ÅÀÇ ²®ÁúÀ» ¡®¾ßÃÊ(å¯õ¡)¡¯¶ó´Â ¾àÀç·Î ¾²´Âµ¥, º¹ºÎÀÇ ³ÃÁõÀ» Á¦°ÅÇÏ°í ±¸Åä¿Í ¼³»ç¸¦ ±×Ä¡°Ô Çϸç, ȸÃ桤°£µð½ºÅ丶¡¤Ä¡Å롤Áö·ç¼º ÇǺο°¿¡ È¿°ú°¡ ÀÖ´Ù. ¿¹·ÎºÎÅÍ »êÃʳª¹« ¿­¸Å ±â¸§Àº ¹Î°£¿¡¼­ À§À庴À̳ª ±â°üÁöõ½Ä, ºÎ½º·³ µîÀÇ Ä¡·áÁ¦·Î ÀÌ¿ëÇÏ¿´´Ù. ÃÖ±Ù¿¡´Â »êÃʳª¹« Á¾ÀÚ¿¡¼­ ÃßÃâÇÑ Á¤À¯ ¹°ÁúÀÌ ±¹ºÎ ¸¶Ãë ¹× ÁøÅë ÀÛ¿ëÀÌ ÀÖ°í, ´ëÀå±Õ¡¤±¸±Õ·ù¡¤µðÇÁÅ׸®¾Æ±Õ µî¿¡ Ç×±Õ ÀÛ¿ëÀÌ ÀÖ´Â °ÍÀ¸·Î º¸°íµÇ¾ú´Ù

-------------
¿ù¿äº´¿¡ Ãà óÁø ´ç½Å, ¿À´Ã ¸Å¿î¸À Á» º¼·¡¿ä?
[Áß¾ÓÀϺ¸] ÀÔ·Â 2015.12.07 02:17 °­Çý¶õ ±âÀÚ

¡¡¿©±â¿¡ ¿äÁò »ö´Ù¸¥ ¸Å¿î¸ÀÀÌ ´õÇØÁ³´Ù. Áß±¹ ¾²ÃÓ(ÞÌô¹) ¿ä¸®·Î ´ëÇ¥µÇ´Â ¡®¸¶¶ó(Ø«Õ¸)¡¯´Ù. ¸¶¶ó¶õ Áß±¹¾î·Î ¡®¸Ê°í ¾ó¾óÇÏ´Ù¡¯¶ó´Â ¶æÀÌ´Ù. ÀÌ ¸Å¿î ´À³¦ÀÌ ¿ì¸®°¡ ¿©Å ¸Ô¾ú´ø ¸Å¿î¸À°ú ´Ù¸£´Ù. ººÀ½ ¿ä¸®ÀÎ ¸¶¶ó¼§±Å³ª »þºê»þºêÀÎ È̱Š¸ðµÎ ±â¹¦ÇÏ°Ô ¾ó¾óÇÏ´Ù. ¹«¾ùÀÌ ´Ù¸¥ °ÍÀϱî. ÀÌÁ¦±îÁö ¸Å¿î¸ÀÀº ¾îµð¼­ ¿Â °ÍÀϱî.
¡¡# ÀÔ¼úÀÌ ¸¶ºñµÉ µí ¾Æ¸° ¸À=¾²ÃÓ ¿ä¸®¿¡¼­ ¸Å¿î¸ÀÀÇ ÁÖ¿ªÀº ¡®¾²ÃÓ »êÃÊ(Çиí Zanthoxylum simulans)´Ù. Çѱ¹¿¡¼­ »êÃÊ(ߣõ¡)¶ó°í ºÒ¸®´Â °Í(Çиí Zanthoxylum schinifolium)°ú ´Ù¸¥ Á¾·ù´Ù. ¾²ÃÓ Áö¹æÀ» ´ëÇ¥ÇÏ´Â Çâ½Å·á·Î ÃÊÇdzª¹« ¿­¸Å´Ù. ¿©±â 3% Æ÷ÇÔµÈ ÇÏÀ̵å·Ï½Ã ¾ËÆÄ »ê¼î¿Ã(hydroxy alpha sanshool)À̶ó´Â ¼ººÐÀÌ ¾ó¾óÇÔÀÇ ÁÖ¿ªÀÌ´Ù.
¡¡°íÃßÀÇ Ä¸»çÀ̽Š¼ººÐÀº ¼ÓÀÌ Å¸¸é¼­ ¿­ÀÌ ¿À¸£´Â µíÇÑ ´À³¦À» ÁØ´Ù. ÀÌ ¼ººÐÀº ½Å°æ¼¼Æ÷°¡ ¿­ °¨°¢À» ¹Þ¾ÆµéÀÌ´Â ¼ö¿ëü TRPV Áß 43µµ ÀÌ»óÀÇ ¿­À» °¨ÁöÇÏ´Â TRPV1À» ÀÚ±ØÇÑ´Ù. ¸¶Ä¡ °í¿ÂÀ¸·Î ÇǺο¡ È­»óÀ» ÀÔ´Â °Í°ú °°Àº ÀÚ±ØÀÌ´Ù.
¡¡¹Ý¸é ¾²ÃÓ »êÃÊÀÇ ¸Å¿î¸ÀÀº ÀÔ¾ÈÀÌ ¾Æ¸®¸é¼­ ÀÔ¼úÀÌ ¸¶ºñµÇ´Â ´À³¦ÀÌ´Ù. ¿µ±¹ÀÇ À¯´Ï¹ö½ÃƼ Ä®¸®Áö ·±´ø ¿¬±¸ÆÀ¿¡ µû¸£¸é »ê¼î¿Ã ¼ººÐÀÌ µç »êÃʾ×À» ÀÔ¼ú¿¡ ¹ß¶úÀ» ¶§ ÃÊ´ç 50ȸ Áøµ¿(50Ç츣Ã÷)ÇÏ´Â µíÇÑ ÀÚ±ØÀ» ¹Þ´Â °ÍÀ¸·Î Á¶»çµÆ´Ù. ÀÌ Áøµ¿Àº ÇǺΠÁøÇÇ¿¡ ÀÖ´Â µ¹±â ¾È¿¡ À§Ä¡ÇÑ ¸¶À̽º³Ê¼Òü(ÃË°¢¼Òü)¸¦ ÀÚ±ØÇÑ °ÍÀ¸·Î, ¸¶À̽º³Ê¼Òü´Â ÇǺο¡¼­ ¶³¸®´Â Àڱؿ¡ ¹ÝÀÀÇÑ´Ù. ´ë½Å »ê¼î¿Ã ¼ººÐÀº »êÃʸ¦ ¸»·Á °¡·ç¸¦ ³¾ °æ¿ì °ø±â Áß¿¡ Áõ¹ßµÇ¾î ¾ø¾îÁ® ¹ö¸°´Ù. Ãß¾îÅÁ¿¡ ³Ö´Â »êÃÊ°¡·ç¿¡¼­ ¾ó¾óÇÑ ¸ÀÀ» ´À³¢±â Èûµç ÀÌÀ¯°¡ ÀÌ ¶§¹®ÀÌ´Ù.

[¾Æ¹«Æ°, ÁÖ¸»] ¾²ÃÓ½Ä ¸Å¿î ¸À ¾ó¾óÇÑ ¸¶¶óÀÇ ¸Å·Â
ÀÌÇظ² Ǫµå Ä®·³´Ï½ºÆ®    2019.04.06 03:00

¡°Áß±¹ ÀÏÃÊ ¼öÀÔ·®ÀÌ ¸î ÇØ »çÀÌ 20~30%°¡·® Áõ°¡Çß½À´Ï´Ù. ´ë½Å Áã¶Ë°íÃß´Â ÀÏÃÊ ¼öÀÔ·®ÀÌ Áõ°¡ÇÑ ¸¸Å­ ÁÙ¾îµé¾úÁÒ.¡± ¿¬ 45¾ï¿ø ÀÌ»ó ¸ÅÃâ ±Ô¸ð·Î °íÃ߸¦ ´ë·® Ãë±ÞÇÏ´Â °æµ¿½ÃÀå ´ë±¤°íÃß ¾ÈÈ¿Ãæ ´ëÇ¥ÀÇ À̾߱â´Ù. Áã¶Ë°íÃß´Â ¸Å¿î ´ß¹ß, °¥ºñÂò, Á·¹ß µîÀÌ À¯ÇàÇÏ´Â µ¿¾È ¼öÀÔ·®ÀÌ Áõ°¡Çß´ø µ¿³²¾Æ °íÃß´Ù. ¶¡ »¹»¹ ³ª´Â ±× ¸Å¿î ¾ç³ä ¸ÀÀÇ ºñ°áÀ̾ú´Ù. ÀÏÃÊ´Â Áã¶Ë°íÃߺ¸´Ù´Â ´ú ¸Ê°í, û¾ç°íÃߺ¸´Ù´Â µÎ ¹è°¡·® ¸Å¿î Áß±¹ °íÃß Ç°Á¾. ¸¶¶ó ¿ä¸®¿¡ ÇʼöÀûÀ¸·Î »ç¿ëµÈ´Ù. ¸Å¿î ¸ÀÀÇ ÃëÇâÀÌ ´ë·úÀ¸·Î ¿Å°Ü °¬´Ù.

»ö´Ù¸¥ ¸Å¿î ¸À, ¸¶¶óØ«Õ¸ ¿­Ç³

Áß±¹ ¾²ÃÓ¿¡¼­ ¿Â ¸¶¶óØ«Õ¸ ¿­Ç³Àº ÀÌÁ¦ ±× ´©±¸µµ ¸»¸± ¼ö ¾ø´Ù. ½ÃÀÛÀº ¸î ÇØ Àü, È­¾çµ¿, ´ë¸²µ¿, ±¸·Îµ¿ µî »õ·Î Çü¼ºµÈ ¼­¿ï ¼Ó ¡®Â÷À̳ª Ÿ¿î¡¯¿¡¼­ºÎÅÍ¿´´Ù. Áß±¹ÀÇ µ¿ºÏ Áö¿ª À½½Ä, ´ëÇ¥ÀûÀ¸·Î ¾ç²¿Ä¡ ÀÏ»öÀÌ´ø Áß±¹ °Å¸®¿¡ ¾²ÃÓ Áᫎ Àü¹®Á¡ÀÌ ½Ç½Ã°£À¸·Î µîÀåÇϱ⠽ÃÀÛÇß´Ù. Áß±¹¿¡¼­µµ ¾²ÃÓ À½½ÄÀº °Å±¹Àû Àαâ´Ù. Áß±¹ÀÎ °Å¸®¿Í ´ëÇа¡¸¦ Áß½ÉÀ¸·Î ÇÑ Æø¹ßÀûÀÎ È帧Àº ÀÌÁ¦ Æò¹üÇÑ °ÅÁÖÁö¿ª °ñ¸ñ±îÁö ¹øÁ® ¿Ô´Ù.
ÇÏÀ̵ð¶ó¿À, ¸¶Ä«¿Àµµ¿ì¶ó¿À °°Àº ÇöÁö È̱ŠüÀÎÁ¡ÀÌ Çѱ¹¿¡ ÁøÃâÇß°í, È̱ŠüÀÎÁ¡¿¡¼­ ´Üü ¸ðÀÓÀ» °®´Â ÁßÀå³âÃþ ¸ð½Àµµ Á¦¹ý ÀÚÁÖ º¼ ¼ö ÀÖ´Ù. ÄôǪÍíÜý¸¦ µ¹¸²ÀÚ¸¶³É ¾²´Â ¿©·¯ ¸¶¶óÅÁ üÀÎÁ¡ÀÌ ¸¶Ä¡ ±è¹äõ±¹Ã³·³ ÈçÇÏ°Ô µ¿³× ¾î±Í±îÁö »ý°Ü³ª°í ÀÖ´Ù.

ºÐ½Ä üÀÎÁ¡¼­ºÎÅÍ Æйи® ·¹½ºÅä¶û, ½ÉÁö¾î º£Æ®³² À½½Ä üÀÎÁ¡¸¶Àú. ¿Ü½Ä¾÷°è¿¡¼± °¡¸± °Í ¾øÀÌ ¾Õ´ÙÅõ¾î ¸¶¶ó ¸Þ´º¸¦ µµÀÔÇÏ°í ÀÖ´Ù. Çѱ¹ÀÎÀÇ ¼Ò¿ï Ǫµå, ġŲµµ ¿¹¿Ü´Â ¾Æ´Ï´Ù. BBQ¿¡¼­ ¸¶¶ó ¾ç³ä¿¡ ¹ö¹«¸° ¡®¸¶¶óÇÖġŲ¡¯À» ÆǸŠÁßÀÌ´Ù. ¶Ç´Ù¸¥ ¼Ò¿ï ǪµåÀÎ ¶±ººÀÌ ¶ÇÇÑ ¸¶¶ó ¿­Ç³À» ÇÇÇÏÁö ¸øÇß´Ù. ¾ç³ä¿¡ ¸¶¶ó ÇâÀ» ´õÇÑ ¸¶¶ó¶±ººÀÌ·Î Ç»ÀüµÆ´Ù. ¿ä»çÀÌ À¯Æ©¹ö »çÀÌ¿¡¼± È̱ŠÀç·áÀÎ ÄäÆÝ宽ÝÏ(³³ÀÛÇÑ Áß±¹ ´ç¸é), ÆÝÇÏ¿ÀÁîÝÏÙÄí­(°¡·¡¶± ¸ð¾ç ´ç¸é)¸¦ ¶±ººÀÌ¿¡ ³Ö¾î ¸Ô´Â ÄÜÅÙÃ÷°¡ ½ñ¾ÆÁ® ³ª¿À°í ÀÖ´Ù.

µµ½ÃÀÎÀÇ °£ÆíÇÑ ¹ä»ó ¿ªÇÒÀ» ÇÏ´Â ÆíÀÇÁ¡µµ ¸¶¶ó ÀÏ»ö. CU ÆíÀÇÁ¡ÀÌ ÀÇ¿åÀûÀÌ´Ù.
ÀÛ³â Ãâ½ÃÇÑ CU ¸¶¶óÅÁÀÌ Ãâ½Ã 3°³¿ù¸¸¿¡ 15¸¸ °³ ÆÈ·È´Ù. Áö³­ 3¿ù ¸ÅÃâ½ÅÀå·üÀº Ãâ½Ã ÃÊ ´ëºñ 91.9%¿¡ ´ÞÇß´Ù. ±× ±â¼¼¸¦ À̾î Áö³­ 3¿ù ¸»¿¡´Â ¸¶¶óººÀ½¸éÀ» À§½ÃÇØ ±è¹ä, »ï°¢±è¹ä, µµ½Ã¶ô, ¸¸µÎ, °úÀÚ¿¡ Áï¼® ¾ÈÁÖ·ù±îÁö ´Ù¾çÇÑ Á¦Ç°±ºÀÇ ¸¶¶ó ¶óÀξ÷À» ´ë°Å Ãâ½ÃÇß´Ù. ¾²ÃÓ½Ä ¸¶¶ó ¿ä¸®´Â Çѱ¹ ½Ä¹®È­ÀÇ ÀϺηΠ¶ß°Ì°Ô ÀÚ¸® Àâ¾Ò´Ù.

¸¶¶ó, ¾ó¾óÇÏ°í ¸Å¿î ¸ÀÀÇ ½Å¼¼°è
±×·¡¼­ ´ëü ¸¶¶ó¶õ ¹«¾ùÀΰ¡. ¸¶¶ó´Â Áß±¹ÀÇ 4´ë ¿ä¸® Áß ÇϳªÀÎ ¾²ÃÓ Áß½ÄÀÇ ÇÙ½ÉÀÌ´Ù. ¸¶´Ã, ÈÄÃß, »ý°­, È­ÀÚ¿À, °íÃß µîÀÌ ¾²ÃÓ ¸ÀÀÇ ±âº»Àε¥, ±× Áß È­ÀÚ¿À¿Í °íÃß°¡ ³»´Â ¸ÀÀÌ °ð ¸¶¶ó´Ù. ¸ÀÀ» Ç¥ÇöÇÏÀÚ¸é ¡®¸Ê´Ù¡¯ ´ë½Å¿¡ ¡®¸¶¶óÇÏ´Ù¡¯¶ó´Â ½ÅÁ¶¾î·Î ¼³¸íÇØ¾ß ÇÏ´Â ¼ºÁúÀÇ °ÍÀÌ´Ù.
¸Å¿î ¸ÀÀÎ ¶óÕ¸´Â ¿ì¸®µµ ¹«Ã´ Àß ¾Ë°í ÀÖ´Â °Í°ú µ¿ÀÏÇÑ ¸Å¿î ¸ÀÀÌ´Ù. °íÃßÀÇ Àͼ÷ÇÑ ¸Å¿î ¸ÀÀÌ ¶ó´Ù. ¸¶Ø«´Â ¾ö¹ÐÈ÷ ¸ÀÀ̶ó±âº¸´Ù´Â ¹°¸®ÀûÀÎ Àڱؿ¡ ´õ °¡±õ´Ù. ÈÄÃß, »êÃÊ, Á¦ÇÇ¿Í ºñ½ÁÇÏ°Ô »ý±ä È­ÀÚ¿Àü£õ¡¿¡¼­ ºñ·ÔµÈ´Ù. È­ÀÚ¿À´Â ·¹¸ó°ú °°Àº Á¾·ùÀÇ »õÄÞÇÑ Çâ°ú ¸ÀÀ» °®°í ÀÖÀ¸¸é¼­ µ¶Æ¯ÇÑ Àü±â ÀÚ±ØÀ» Àü´ÞÇÏ´Â Çâ½Å·á´Ù.

¡°È­ÀÚ¿À¿¡ ÇÔÀ¯µÈ »ê¼î¿ÃÀº µ¶Æ¯ÇÑ ÀÛ¿ëÀ» ÇÕ´Ï´Ù. ¹Ì¼¼ÇÑ Áøµ¿Ã³·³ ´À²¸Áö´Â ÃË°¢ ÀÚ±ØÀ» ÁÖÁÒ. ´öºÐ¿¡ ¸¶¶ó ¿ä¸®¸¦ ¸ÔÀ¸¸é ¾ó¾óÇÑ ´À³¦ÀÌ ÀÔ¿¡ ¹Ù·Î ¿É´Ï´Ù.¡± °úÇÐÀûÀ¸·Î ¸ÀÀ» ºÐ¼®ÇÑ ¡®¸ÀÀÇ ¿ø¸®¡¯¸¦ ¾´ ½ÄÇ°°øÇÐÀÚ ÃÖ³«¾ð ¾¾ÀÇ ¼³¸íÀÌ´Ù. °íÃßÀÇ Ä¸»çÀ̽ÅÀº ¶ß°Å¿î ¿Âµµ·Î ´À²¸Áö´Â ¸Å¿î ¸ÀÀ» ³»´Â µ¥ ºñÇØ È­ÀÚ¿ÀÀÇ »ê¼î¿ÃÀº ¸¶ÃëÁֻ縦 ¸ÂÀº µí ¸ÛÇÑ ¸¶ºñ°¨À» ÁØ´Ù. ºÒŸ¿À¸£´Â ¸Å¿î ¸À, ±×¸®°í »õÄÞÇÏ°í ¾ó¾óÇÑ °¨°¢ÀÌ ´õÇØÁø °ÍÀÌ ¾²ÃÓ Áß½ÄÀÇ ¸À, ¸¶¶ó´Ù.

È̱Å∙¸¶¶óÅÁ∙¸¶¶ó¼§±Å∙ÃÓÃÓ¡¦ À̸§¸¸Å­ ³¸¼³°íµµ º°³­ ¸À
Çѱ¹¿¡¼­ ¸¶¶ó ¿ä¸® 3´ëÀåÀ¸·Î ²ÅÀ» ¸¸ÇÑ ¸Þ´º´Â ¾²ÃÓ½Ä È̱Å, ¸¶¶óÅÁ, ±×¸®°í ¸¶¶ó¼§±Å´Ù. È̱Ŵ ¸¶¶óÇÏ°í ±â¸§Áø È«ÅÁ, ¹ö¼¸À̳ª »ç°ñ, ä¼Ò·Î Èò À°¼ö¸¦ ³½ ¹éÅÁ, »õÄÞ´ÞÄÞÇÑ Å丶ÅäÅÁ µî À°¼ö µÎ ¼¼°¡Áö¸¦ ¿ø¾Ó³¿ºñ¿¡ ²ú¿© °í±â¿Í Çػ깰, ä¼Ò ¿Ü¿¡µµ °®°¡Áö µÎºÎ, ´ç¸é µî Àç·á¸¦ Á¶±Ý¾¿ ´ã°¡ ÀÍÇô ¸Ô´Â´Ù. ¿øÇÏ´Â Àç·á¸¦ ÇÑ Á¢½Ã¾¿ ÁÖ¹®ÇÏ´Ù º¸¸é Àδç 3~4¸¸¿ø Èǽ ³Ñ´Â °è»ê¼­¸¦ ¹Þ°Ô µÇ´Â °í±Þ È̱źÎÅÍ Àδç 1¸¸¿ø´ë ÈĹÝÀÇ ¹«ÇѸ®ÇÊ È̱źÎÆä±îÁö °¡°Ý´ë ½ºÆåÆ®·³ÀÌ ³Ð´Ù.
¸¶¶óÅÁÀº È̱ÅÀÇ È«ÅÁ°ú °ÅÀÇ ºñ½ÁÇÑ ±¹¹° ¿ä¸®´Ù. È̱Ŵ ½ÄŹ¿¡¼­ ²ú¿©°¡¸ç ¸Ô°í, ¸¶¶óÅÁÀº ½Ä´ç Áֹ濡¼­ ²ú¿©³½´Ù´Â °ÍÀÌ °¡Àå ¸íÈ®ÇÑ Â÷ÀÌ. ÀÏÇ°¿ä¸®·Î ±¹¼ö¸¦ ¸»¾Æ ¸¶¶óÅÁ¸éÀ¸·Î ³»´Â °÷µµ ÀÖ°í, ³ÃÀå ¼îÄÉÀ̽º¿¡ Áø¿­µÈ Àç·á¸¦ ¿øÇÏ´Â ¸¸Å­ °í¸£°í Áß·®´ë·Î °ªÀ» ¸Å±â´Â ºÎÆä½Ä ¸¶¶óÅÁ Àü¹®Á¡µµ ÀÖ´Ù.
¸¶¶ó¼§±Å´Â ººÀ½ ¿ä¸®. ¸¶¶ó ¾ç³ä¿¡ °®°¡Áö Àç·á¸¦ ºº¾Æ³½ À½½ÄÀÌ´Ù. ¸¶¶óÅÁó·³ ºÎÆä½ÄÀ¸·Î Àç·á¸¦ °í¸¦ ¼ö ÀÖ´Â °÷µµ ÀÖ°í, Á¤ÇØÁø Àç·á´ë·Î ¾Ë¾Æ¼­ ¸¸µé¾îÁÖ´Â °÷µµ ÀÖ´Ù. ÇÑ °¡Áö ´õ ²ÅÀÚ¸é ¸¶¶ó·Õ»þµµ ÀÖ´Ù. ·Õ»þ¶ó´Â ÀÛÀº °¡À縦 ¸¶¶ó ¾ç³ä¿¡ ºº¾Æ³½ ÀÌ À½½ÄÀº ¿µÈ­ ¡®¹üÁ˵µ½Ã¡¯¸¦ ÅëÇØ ¼¼°£¿¡ ¿ä¶õÇÏ°Ô ¾Ë·ÁÁ³´Âµ¥ ¹ß¶ó ¸Ô±â°¡ ¼º°¡¼Å¼­ÀÎÁö ÃÖ±Ù¿£ ÀαⰡ ½Ãµé¾ú´Ù.

 

¸¶¶óÅÁ°ú ¸¶¶ó¼§±Å¿¡µµ °øÅëÀûÀ¸·Î »ç¿ëµÇ´Â Àç·áµéÀÌ´Ù. À§ ¿ÞÂʺÎÅÍ ¼ø¼­´ë·Î µîÈ«°íÃß¿Í ÃÊ°íÃß, ÃÊ°ú¿Í °¨ÃÊ¿Í ÆÈ°¢, °í°­·®°ú ¹éÁö, ¿ù°è¼öÀÙ°ú »ê¾à, °èÇÇ, û È­ÀÚ¿À¿Í È« È­ÀÚ¿À, »ý È­ÀÚ¿À, Áî¶õ.
µÑ° ÁÙÀº È̱ſ¡ µé¾î°¡´Â ´Ü¹éÁú Àç·áµé. ¿ÞÂʺÎÅÍ Â÷·Ê´ë·Î ¾ç°í±â, ¼Ò½ÃÁö, »õ¿ì¿ÏÀÚ, ¸¸µÎ, ÇǵκÎ, ǪÁÖݯñÓ, ¾ó¸° µÎºÎ. ÇöÁö¿¡¼­´Â ¼±Áö³ª ³»Àå·ù»Ó ¾Æ´Ï¶ó ³ú, Çô, ¹ß µî ´õ ´Ù¾çÇÑ ´Ü¹éÁú Àç·á¸¦ ¸Ô´Â´Ù.
¾Æ·¡´Â ä¼Ò·ù¿Í ź¼öÈ­¹° Àç·á. ¿ÞÂʺÎÅÍ Ã»°æä, °¨ÀÚ¿Í ¿¬±Ù, ¹èÃß¿Í ´ÜÈ£¹Ú, ÄäÆÝ, ÆÝÇÏ¿ÀÁî, ¸ñÀ̹ö¼¸, Ç¥°í¹ö¼¸°ú ´ÀŸ¸® ¹ö¼¸. / »çÁø=À̽ſµ¡¤±èÁ¾¿¬ ±âÀÚ

 


 

Physiological basis of tingling paresthesia evoked by hydroxy-¥á-sanshool
Richard C Lennertz,1 Makoto Tsunozaki,2 Diana M Bautista,2 and Cheryl L Stucky1

Our data demonstrates that the majority of fibers activated by sanshool are A¥â and D-hair neurons that mediate the detection of light touch, rather than noxious stimuli. However, there is a subset of C-fibers that do respond robustly to sanshool.

Hydroxy-¥á-sanshool, the active ingredient in plants of the prickly ash plant family, induces robust tingling paresthesia by activating a subset of somatosensory neurons. However, the subtypes and physiological function of sanshool-sensitive neurons remain unknown. Here we use the ex vivo skin-nerve preparation to examine the pattern and intensity with which the sensory terminals of cutaneous neurons respond to hydroxy-¥á-sanshool. We found that sanshool excites virtually all D-hair afferents, a distinct subset of ultra-sensitive light touch receptors in the skin, and targets novel populations of A¥â and C-fiber nerve afferents. Thus, sanshool provides a novel pharmacological tool for discriminating functional subtypes of cutaneous mechanoreceptors. The identification of sanshool-sensitive fibers represents an essential first step in identifying the cellular and molecular mechanisms underlying tingling paresthesia that accompanies peripheral neuropathy and injury.

Sanshool-evokes periodic burst firing in sensory fibers
In a subset of fibers, sanshool evoked a burst pattern of action potential firing (Figure 6A). Bursting was most prevalent among sanshool-sensitive C-fibers and D-hair fibers, occurring in 73% and 26% of sanshool-sensitive fibers, respectively. Large myelinated A¥â fibers were the least likely to show bursting as only one A¥â-RA fiber exhibited bursting and none of the A¥â-SA fibers displayed bursting (Figure 6A). Interestingly, the rapidly adapting D-hair fibers and slowly adapting C-fibers displayed distinct patterns of burst firing. Rapidly adapting D-hair fibers (and the A¥â-RA fiber) issued quick bursts of action potentials with short intervals, whereas the slowly adapting C-fibers issued significantly longer-duration bursts of action potentials at less frequent intervals (Figure 6B, right). Consequently, the average number of action potentials per burst was considerably higher in C-fibers than in D-hair or RA-A¥â fibers (Figure 6B, left). These data suggest differences in the membrane dynamics of rapidly and slowly adapting fibers.

Discussion
Here, we sought to identify the subtypes of sensory neurons that underlie the tingling paresthesia elicited by hydroxy-¥á-sanshool. Our findings show that sanshool is the first pharmacological agent identified that can discriminate between distinct subsets of mechanosensory neurons (Figure 6). Among A¥ä fibers, virtually all D-hair afferents were vigorously excited by sanshool, whereas AM nociceptors were completely unresponsive. D-hair afferents are the most sensitive of all mechanoreceptors, with mechanical thresholds below the measurable limit (Brown and Iggo, 1967; Burgess et al., 1968; Koltzenburg et al., 1997). They are a key fiber type required for normal tactile acuity and movement detection (Brown and Iggo, 1967; Wetzel et al., 2007). In addition, D-hairs have also been implicated in diabetic peripheral neuropathy (Jagodic et al., 2007; Shin et al., 2003), which often leads to tingling paresthesia in patients.

Sanshool also activated rapidly adapting A¥â mechanoreceptors that encode the movement of guard hair follicles. Similar to rapidly adapting A¥ä D-hair receptors, sanshool was more potent in activating A¥â fibers with rapidly adapting properties to mechanical force than those with slowly adapting properties. Thus, among all myelinated fibers, sanshool activates rapidly adapting fibers far more extensively than slowly adapting fibers. Spontaneous activity in rapidly adapting myelinated fibers has been implicated in both injury- and disease-evoked paresthesia, as well as in post-ischemic paresthesia; however, the exact neuronal subtypes that mediate tingling paresthesia have not been characterized (Nordin et al., 1984; Ochoa and Torebjork, 1980).

A subset of slowly-adapting A¥â fibers also responded to sanshool, albeit with lower firing intensities. Most slowly adapting A¥â fibers are thought to be ¡°SA-I¡± that innervate Merkel cells and encode sustained pressure to skin, but some slowly adapting A¥â fibers are ¡°SA-II¡± and sense skin stretch (Srinivasan et al., 1990; Lamotte et al., 1998). Interestingly, in rat 35% of slowly adapting A¥â fibers in the sural nerve and in mice 52% of slowly adapting A¥â fibers in the saphenous nerve are reported to be SA-II stretch sensors (Leem et al., 1993; Maricich et al., 2009). Furthermore, a distinguishing feature of SA-II receptors is that they are approximately six times less sensitive to skin indentation than SA-I receptors (Johansson and Vallbo, 1979, 1980). Two findings support the idea that the sanshool-sensitive slowly adapting A¥â fibers are SA-II type skin stretch sensors. First, the proportion of sanshool-sensitive slowly adapting A¥â fibers (36%) is consistent with the proportion of SA-II type skin stretch sensors. Second, the sanshool-sensitive SA-A¥â fibers were ¡­5 fold less sensitive to sustained force than the sanshool-insensitive population.

Sanshool activated a unique subset of C-fibers that has an intrinsically slower conduction velocity than other C-fibers. Conduction velocity is largely dependent on fiber diameter and myelination which influence the internal resistance and membrane capacitance of nerve axons. Thus, we may observe this difference because sanshool-sensitive channels are expressed on the smallest diameter C-fibers. However, conduction velocity also correlates with the length constant of a nerve fiber, which is directly proportional to membrane resistance (Koester and Siegelbaum, 2000; Hodgkin and Rushton, 1946). An intriguing possibility is that sanshool-sensitive channels, potentially KCNK18 channels, decrease membrane resistance and thereby, directly slow the conduction velocity. Previous studies of tingling paresthesia in humans have failed to report aberrant activity of A¥ä or C-fibers (Nordin et al., 1984; Ochoa and Torebjork, 1980). However, this may be due to technical difficulties in recording from patients experiencing tingling paresthesia. Our data implicate both D-hair afferents and the unique population of slowly conducting C-fibers in tingling paresthesia.

Our data lend support to the hypothesis that sanshool elicits tingling paresthesia through selective activation of mechanosensitive somatosensory neurons (Figure 6). Human psychophysical testing shows that sanshool exhibits its sensory effects ¡­60 seconds after application (Bryant and Mezine, 1999). Our behavioral data show that mice respond to the effects of sanshool with a characteristic latency of 50 seconds, which is strikingly similar to that observed in humans. The sanshool response latency is significantly slower than latencies to capsaicin or mustard oil. In addition, sanshool consumption fails to elicit the nocifensive responses of nose rubbing and wiping that are commonly observed following consumption of capsaicin or mustard oil (unpublished observations). Moreover, no differences were observed in the sanshool response latency between wild type and TRPA1-/-/TRPV1-/- animals. Thus, sanshool-evoked behaviors more likely result from tingling paresthesia, rather than painful irritation. This is consistent with the activation pattern of A¥ä and A¥â fibers by sanshool, as well as with results from human psychophysical studies demonstrating that sanshool does not elicit pain sensations (Bryant and Mezine, 1999; Sugai et al., 2005). Although sanshool also activates a subset of C-fibers, it is unclear whether these C-fibers actually transmit pain signals. Several studies have demonstrated the existence of C-fibers that transmit information other than pain. For example, a recent study demonstrated the existence of unmyelinated C-fibers that code for pleasant touch sensations in humans (Loken et al., 2009). In addition, C-fibers that transmit sensations of brushing and itch have also been reported (Zotterman, 1939). Finally, specific labeling of neurons that express a Mas-related G protein-coupled receptor, MrgprB4, revealed a unique subpopulation of C-fibers that specifically innervate the skin, but not the viscera; these fibers are hypothesized to function as touch receptors, rather than nociceptors (Liu et al., 2007). Further analysis at the molecular and behavioral levels is required to elucidate the exact role of this new class of sanshool-sensitive C-fibers.

Common among all sanshool-sensitive fibers is the presence of action potential bursting, which we observed in 29% of fibers. Bursting is exhibited by many neurons within the central nervous system, as well as some peripheral neurons. A short burst of action potentials may temporally summate to provide high-fidelity neuronal transmission (Williams and Stuart, 1999) or foster long term potentiation to strengthen neuronal synapses (Liu et al., 2008). In the peripheral nervous system, bursting has been described in trigeminal afferents in the brainstem that are thought to play a key role in the central pattern generator circuit regulating mastication in rodents (Brocard et al., 2006; Hsiao et al., 2009). Bursting is also associated with tingling paresthesia. Microelectrode recordings show robust bursting of sensory afferents in normal human subjects experiencing tingling paresthesia (Ochoa and Torebjork, 1980). In addition, neuronal recordings from patients suffering from activity-dependent tingling paresthesia showed robust bursting of myelinated, rapidly-adapting mechanoreceptors that increased with the degree of paresthesia. Finally, in rat models of diabetic neuropathy, robust bursting of medium diameter fibers increased in diabetic neurons as compared to wild type neurons (Jagodic et al., 2007). Indeed, tingling paresthesia is a common complaint of diabetic patients with neuropathy. We speculate that the bursting pattern may underlie the tingling sensation commonly associated with chewing Szechuan peppers.

Activation of TRPA1 and TRPV1, and inhibition of the two-pore potassium channels KCNK3 (TASK-1), 9 (TASK-3) and 18 (TRESK) have been proposed as mechanisms by which sanshool activates neurons (Koo et al., 2007; Riera et al., 2009; Menozzi-Smarrito et al., 2009) (Bautista et al., 2008). However, we demonstrate that sanshool-evoked fiber responses are of similar prevalence and amplitude in the presence or absence of TRPA1 and TRPV1 selective antagonists. Likewise, sanshool-evoked behaviors were similar between wild type and TRPA1-/-/TRPV1-/- animals. These data suggest that neither TRPA1 nor TRPV1 mediate the excitatory effects of sanshool. In somatosensory neurons, expression and electrophysiological studies show the presence of KCNK18 channels (Dobler et al., 2007; Kang et al., 2008), but expression of KCNK3 and 9 have not been demonstrated; however, KCNK3 and 9 are expressed by keratinocytes in the skin (Kang and Kim, 2006). Thus, sanshool may act directly on KCNK channels in sensory neurons as well as in keratinocytes, which are known to modulate sensory neuron function (Koizumi et al., 2004; Lumpkin and Caterina, 2007) to induce tingling paresthesia. The bursting behavior observed in response to sanshool application is also consistent with a model of potassium channel blockade. Bursting in trigeminal neurons has been linked to the activity of Kv1 channels (Hsiao et al., 2009), and TEA-insensitive potassium channel(s) may contribute to burst firing (Brocard et al., 2006). However, analysis of KCNK-deficient mice is required to test this hypothesis. Recently, two other members of the KCNK channel family, KCNK2 (TREK-1) and KCNK4 (TRAAK), have been shown to regulate responses to thermal and mechanical stimuli in nociceptors (Maingret et al., 1999; Noel et al., 2009). Thus the KCNK family of channels may play key roles in a variety of mechanosensitive sensory fibers. Again, the analysis of mice lacking KCNK channels will be required to test this hypothesis.

Our finding that sanshool robustly activates a distinct subset of D-hair, ultra-sensitive light touch receptors in the skin and targets novel, uncharacterized populations of A¥â and C-fiber nerve afferents shows that sanshool is an innovative tool for physiological and molecular studies. In addition, characterization of sanshool-sensitive mechanoreceptors represents an essential first step in identifying the cellular and molecular mechanisms underlying tingling paresthesia that accompanies peripheral neuropathy and injury.

 


 

Schematic depicting distinct populations of stretch-sensitive and insensitive neurons. Stretch-sensitive neurons fall into two broad categories: Small-diameter cells (red circle) that are dually sensitive to hydroxy-¥á-sanshool (San) and capsaicin (Cap), and large-diamater cells (blue circle) that respond to hydroxy-¥á-sanshool, but not capsaicin. These cells likely correspond to high threshold nociceptors and low threshold proprioceptors, respectively. Stretch-insensitive neurons were predominantly of the small-diameter class and were represented by the subset of capsaicin-sensitive cells that also respond to mustard oil (yellow circle), and a cohort of menthol-sensitive cells (green circle). Circle size depicts relative diameter of the different neuronal subtypes.

-------------
Food vibrations: Asian spice sets lips trembling
Nobuhiro Hagura , Harry Barber  and Patrick Haggard
Published:07 November 2013

We showed that the tingling sensation induced by Szechuan pepper has a consistent and measurable frequency within the range of the RA1 tactile frequency channel. Furthermore, by using a frequency adaptation paradigm, we demonstrated that this tingling is probably mediated by the same pathway/RA1 frequency channel that processes frequency of the mechanical vibrotactile information.

In experiment 1, we confirmed that the application of Szechuan pepper on the lips induces a tingling sensation, as has been shown previously [7,17]. However, some participants also agreed to the description ¡®tingle¡¯ when ethanol (four out of 12 participants) or even water was applied (three out of 12 participants). Interestingly, all seven of these reports involved control conditions experienced before the Szechuan pepper condition. This suggests that these responses may have reflected general tendencies to agree, rather than a discriminative response to the stimuli. By contrast, for the Szechuan pepper condition, 12 out of 12 participants agreed to the description ¡®tingle¡¯, regardless of the condition order. Furthermore, participants anecdotally described a qualitative difference between the tingling induced by the Szhechuan pepper and the other control conditions. Therefore, only the Szechuan pepper reliably induced the sensation having a specific tingling quality, consistent with involvement of a specific class of afferents.

Previous studies have detected many varieties of compounds—sanshool—in the Szechuan pepper (¥á-, ¥â-, ¥ã-, ¥ä-, hydroxy-¥á-, hydroxy-¥â-) [5]. Previous psychophysical studies using derivatives of these have identified hydroxy-¥á-sanshool as the compound most responsible for this unique buzzing and tingling [5,7]. From these previous reports, we believe that also in this study, the hydroxy-¥á-sanshool in the raw pepper activated somatosensory fibres [9] and induced the tingling sensation. However, our interest focused on the tingling sensation itself, not the molecular biochemistry that initiates it. Previous reports did not systematically investigate the perceptual parameters of this tingling sensation, and how these may relate with the activated somatosensory fibres.

The results from the experiments 2–4 suggests that the information which elicits the tingling is conveyed by the light-touch RA1 fibres, which corroborates with the neurophysiological findings showing that the sanshool strongly activates those fibres in rats [9]. Other than the RA1 fibres, sanshool has been shown to also activate other sets of afferent fibres, including RA2, SA1, SA2 fibres and unmyelinated C-fibres [9]. Thus, there is a possibility that the overall sensation of sanshool tingling is a result of ¡®blending¡¯ of all of these afferent fibre activations [23]. However, RA2 fibres responding to higher frequency vibration are reportedly absent from the human orofacial area [15]. Mechanical frequency detection threshold on the lower lips was indeed reported to lack pacinian-type (RA2) like frequency sensitivity [24,25]. Further, slow adapting fibres are less responsive to sanshool than rapid adapting fibres [9]. Direct stimulation of orofacial SA1 and SA2 fibres by microneurography induces only sensations of sustained pressure, and not of tingling or vibration. By contrast, microneurographic stimulation could elicit sensations of flutter-vibration on the superficial skin site only when stimulating RA1 fibres [15], in agreement with our findings. Finally, although low threshold C-fibres have been shown to respond to mechanical stimulations [26,27], they are unlikely to contribute to perceived fast repetitive mechanical stimulation, owing to their slow conduction velocity and marked preference for slowly moving stimuli. Taken together, though Szechuan pepper may activate several fibre classes, we believe that the major contributor for the temporal component (tingling) of the tingling experience is owing to the activation of the RA1 frequency channel. Szechuan pepper creates the experience of vibratory sensation on the lips despite the absence of any mechanical vibration. Sanshool effects on other sensory channels may explain the accompanying feelings of cooling and numbing [7].

In experiment 4, we showed that the preceding prolonged mechanical vibration can reduce the perceived tingling frequency by Szechuan pepper compared with when followed by a static force. This indicates that the mechanical vibration and Szechuan pepper activates the same frequency channel, thus sharing the same tactile processing pathway. Importantly, the adapting vibration did not lead to any significant change in the sensitivity for discriminating frequencies. This suggests that the adaptor vibration did not lead to the strong reduction of the intensity of the signal, which should alter the discrimination ability, but rather worked to adapt the particular (RA1) temporal processing [20,21].

Adaptation to prolonged vibrotactile input has been reported at the receptor level [28], as well as in several central sites, including the cuneate nucleus [29], thalamus [30] and cortex [31]. RA1 type neurons are reported to exist in S1 [32] and are known to underlie frequency discrimination in the RA mechanical frequency range [33]. Therefore, adaptation of tactile processing at any of several stages of the afferent pathway may have affected the firing rate of the S1 neurons. Further studies are required to clarify this point. Nevertheless, the mechanical-to-chemical transfer of adaptation reveals the shared processing pathway between Szechuan pepper and mechanical vibration, and thus indicates that the Szechuan pepper-induced tingling experience is indeed a tactile frequency experience.

Decomposing complex somatosensations into component units of neuronal activity is a critical step towards understanding how the brain constructs sensory experiences. Previous studies were able to investigate the minimal unit of somatosensory experiences using microneurographic stimulation of single afferent fibres [1]. However, natural stimuli generally activate large populations of neurons, each containing several afferents. By using an unusual chemical stimulus to activate a class of tactile receptor, we have been able to identify a discrete population of ¡®labelled lines¡¯ in the somatosensory system, based on their psychophysical properties. This offers a possibility of testing the minimal unit of somatosensation at a population level.

Spontaneous firing of the population of RA afferent fibres and/or Meissner's corpuscle mechanoreceptor fibres are also thought to underlie the ¡®pins and needles¡¯ tingling sensation experienced after ischemia [34,35] or focal nerve compression [36]. As Szechuan pepper can activate populations of these same tactile fibres and induce similar sensations to paraesthesia, our result could provide insights into abnormal afferent fibre discharges in clinical cases of paraesthesia [37].

Finally, food is both an intense sensory experience and a primary carrier of human culture. Modern gastronomy recognizes the multisensory aspects of food, such as temperature [38], colour [39] and sound [40] on perception of flavour and taste. The specific somatosensory effects of Szechuan pepper shown here may provide a unique opportunity to investigate somatosensory contributions to taste perception. Szechuan pepper might boost taste by mimicking touch.

[Ȳ±³ÀÍ ¸Ô°Å¸® ÆÄÀÏ] Á¶ÇÇ? Á¨ÇÇ? Á¦ÇÇ? »êÃÊ?¡¦ Ãß¾îÅÁ¿¡ »Ñ¸®´Â Èæ°¥»ö °¡·çÀÇ Á¤Ã¼´Â 'ÃÊÇÇ'

2014.02.28 17:15

Ãß¾îÅÁÁý¿¡¸¸ °¡¸é Èæ°¥»ö °¡·ç ¶§¹®¿¡ ÇѹÙÅÁ È¥¶õÀÌ ÀδÙ. »ç¶÷µéÀÌ Àú¸¶´Ù ´Ù¸¥ À̸§À¸·Î ºÎ¸¥´Ù. ÃÊÇÇ°¡ ¸Â´Ù. 'Á¶ÇÇ', 'Á¨ÇÇ' 'Á¦ÇÇ' µîÀº »çÅõ¸®ÀÌ´Ù. ±×·¯¸é '»êÃÊ'´Â? »êÃÊ´Â ¶Ç ´Ù¸¥ ½Ä¹°ÀÌ´Ù.
Ãß¾îÅÁ¿¡ ³Ö´Â Çâ½Å·á 'ÃÊÇÇ'´Â ÃÊÇdzª¹« ¿­¸Å´Ù. Çѹݵµ ³²ºÎ Áö¹æ°ú µ¿ÇØ ¿¬¾È¿¡ ÀÚ»ýÇÑ´Ù. Å°°¡ 3m Á¤µµ ÀÚ¶ó°í °¡Áö¿¡ °¡½Ã°¡ ÀÖ´Ù. 5~6¿ù¿¡ ²ÉÀÌ ÇÇ°í 8~9¿ù¿¡ ¿­¸Å¸¦ ¸Î´Â´Ù. ÇâÀº ÀԾȿ¡¼­ 'È­~' ÇÏ°í ÅÍÁø´Ù. Çô¸¦ ¾ó¾óÇÏ°Ô ÇÏ´Â °ÍÀº ÈÄÃß¿Í ºñ½ÁÇϳª ÈÄÃß¿Í ´Þ¸® ½Å¸ÀÀÌ °­ÇÏ´Ù.
'ÃÊÇÇ'¿Í ¸¹À̵é Çò°¥¸®´Â '»êÃÊ'´Â »êÃʳª¹« ¿­¸Å´Ù. »êÃʳª¹«´Â ÁߺΠ³»·ú Áö¹æ¿¡ ÀÚ»ýÇÑ´Ù. ÃÊÇÇ¿Í »ý±è»õ´Â ºñ½ÁÇϳª ±× ¸À°ú ¾²ÀÓÀº ¿ÏÀüÈ÷ ´Ù¸£´Ù. »êÃÊ´Â ¾ó¾óÇÏÁöµµ ½ÃÁöµµ ¾Ê´Ù. ÇâÀº ºñ´© ³¿»õ ºñ½ÁÇÏ´Ù. ¹«¾ùº¸´Ùµµ »êÃÊ´Â Çâ½Å·á·Î ¾²Áö ¾Ê´Â´Ù. ¿­¸ÅÀÇ ¾¾¾Ñ¿¡¼­ ±â¸§À» §´Ù.
ÃÊÇÇ¿Í »êÃÊ´Â ºÐ¸íÈ÷ ´Ù¸¥ ½Ä¹°Àε¥µµ ¸¹Àº »ç¶÷ÀÌ ÃÊÇǸ¦ »êÃʶó°í ºÎ¸£°í, »êÃʸ¦ ÃÊÇÇó·³ ¾´´Ù. Ãß¾îÅÁ Àü¹®Á¡¿¡¼­ Ãß¾îÅÁ¿¡´Ù »êÃÊ °¡·ç¸¦ ÅÐ¾î ³Ö´Â È²¸ÁÇÑ Àϵµ ¹ú¾îÁø´Ù. ÀÌ·¯ÇÑ È¥¶õÀº ¿¹Àü¿£ ¾ø¾ú´Ù. ÃÊÇÇ¿Í »êÃÊÀÇ ÀÚ»ýÁö°¡ ´Ù¸£±â ¶§¹®¿¡ ÃÊÇÇ´Â ³²ºÎ Áö¹æ¿¡¼­ Çâ½Å·á·Î, »êÃÊ´Â ÁߺÎÁö¹æ¿¡¼­´Â ±â¸§À¸·Î ½è´Ù. ÃÊÇÇ¿Í »êÃʸ¦ È¥µ¿ÇÏ°Ô µÈ °Ç ÀϺ»ÀÇ ¿µÇâÀÌ´Ù.
Çѱ¹ÀÇ ÃÊÇǸ¦ ÀϺ»¿¡¼­´Â '»ê¼î(ߣõ¡¡¤»êÃÊ)'¶ó ÇÑ´Ù. '»ê¼î'´Â ÀϺ» À½½Ä¿¡ ¾à¹æ °¨ÃÊó·³ ¾²ÀÌ´Â Çâ½Å·áÀÌ´Ù. ¿ìµ¿Áý ½ÄŹ¿¡ ³õ¿© ÀÖ´Â ½ÃÄ¡¹Ì(öÒÚ«)¿¡µµ ÀÌ°Ô µé¾î ÀÖ´Ù. »ý¼±È¸ °ç¿¡, ±¹¹° À½½Ä À§¿¡ '»ê¼î(ÃÊÇÇ)'ÀÇ ¾î¸°ÀÙÀ» ¿Ã¸®±âµµ ÇÑ´Ù. ÀϺ»¿¡¼­ '»ê¼î'¸¦ Á¢ÇÑ »ç¶÷µéÀÌ Çѱ¹ÀÇ ÃÊÇǸ¦ '»êÃÊ'¶ó ºÎ¸£´Â ÀÏÀÌ Àæ¾ÆÁ³°í, ½ÉÁö¾î ÃÊÇÇ ´ë½Å '»êÃÊ'¸¦ ¾²´Â ÀϱîÁö »ý±ä °ÍÀÌ´Ù. ¾ð¾îÀÇ È¥¶õÀº ¾î¿ ¼ö ¾ø´Â ÀÏÀÌÁö¸¸, Á¦¹ß Ãß¾îÅÁÁý ½ÄŹ¿¡¼­ ºñ´© ³¿»õ ³ª´Â »êÃʸ¦ ¸¸³ª´Â Àϸ¸Àº ¸·°í ½Í´Ù.
ÃÖ±Ù ÃÊÇÇ¿¡ ¶Ç Çϳª È¥¶õÀÌ ´õÇØÁö°í ÀÖ´Ù. À̹ø¿¡´Â 'Áß±¹¹ß'ÀÌ´Ù. ¾²ÃÓ ¿ä¸®¿¡ ¾²ÀÌ´Â 'È­ÀÚ¿À(ü£õ¡¡¤È­ÃÊ)'´Ù. È̱Å(ûýΧ¡¤Áß±¹½Ä »þºÎ»þºÎ) µî ¾²ÃÓ ¿ä¸®°¡ ±Ù·¡¿¡ Àα⸦ ¾òÀ¸¸é¼­ Çѱ¹ÀÎµé »çÀÌ¿¡¼­ Â÷Ãû Àͼ÷ÇØÁö°í ÀÖ´Â À̸§ÀÌ´Ù. ¾î¶² »ç¶÷µéÀº ÀÌ 'È­ÀÚ¿À'¸¦ 'Áß±¹ »êÃÊ'¶ó°í ¼³¸íÇÑ´Ù. ±×·¯´Ï 'È­ÀÚ¿À'´Â Çѱ¹ÀÇ ÃÊÇÇ¿Í °ÅÀÇ °°Àº ½Ä¹°ÀÌ´Ù. Â÷ÀÌ°¡ ÀÖ´Ù¸é Çѱ¹ ÃÊÇǺ¸´Ù ½Å¸ÀÀÌ ´úÇÏ´Ù´Â °Í. ¾ó¾óÇÑ ¸À¿¡¼­´Â µ¿±ÞÀÌ´Ù.
È¥¶õÀ» ¸·ÀÚ¸é ÀÌ·¸°Ô ±â¾ïÇÏ¸é µÈ´Ù. 'Çѱ¹ÀÇ ÃÊÇÇ(õ¡ù«), ÀϺ»ÀÇ »ê¼î(ߣõ¡), Áß±¹ÀÇ È­ÀÚ¿À(ü£õ¡)´Â °°Àº Çâ½Å·á´Ù. ±×¸®°í Çѱ¹ÀÇ »êÃÊ´Â Çâ½Å·á°¡ ¾Æ´Ï´Ù.'
'ÃÊÇÇ'ÀÇ ¿µ¾î À̸§Àº 'Sichuan pepper(¾²ÃÓ ÈÄÃß)'´Ù. ¾²ÃÓ ¿ä¸®¸¦ ÅëÇØ ¼­¾ç¿¡ ¾Ë·ÁÁ³±â ¶§¹®ÀÌ´Ù. 'ÃÊÇÇ'´Â ¶Ç 'Chinese pepper(Áß±¹ ÈÄÃß)'¶ó°íµµ Çϸç, ÀϽÄÀ» ÅëÇؼ­µµ ÀüÆĵǸ鼭 'Japanese pepper(ÀϺ» ÈÄÃß)'¶õ À̸§µµ ¾ò¾ú´Ù. µ¿¾ç Ư»êÀÎ µ¥´Ù ÈÄÃß¿¡´Â ¾ø´Â µ¶Æ¯ÇÑ ÇâÀ» Áö´Ï°í ÀÖ¾î ¼­¾ç¿¡¼­´Â 'µ¿¾çÀÇ ½ÅºñÇÑ ÈÄÃß'·Î ¿©±â±âµµ ÇÑ´Ù. 'Korean pepper(Çѱ¹ ÈÄÃß)'´Â ¾ø´À³Ä°í? ÀÌ À̸§À¸·Î ±¸±Û¸µÀ» ÇÏ¸é °íÃ߸¸ °Ë»öµÈ´Ù. À̸¶Àúµµ Çѱ¹ÀÎÀÌ ÂªÀº ¿µ¾î ¼Ø¾¾·Î ¿Ã¸° °ÍÀÌ´Ù.
Âü ¹¦ÇÏ°Ôµµ Çѱ¹ÀÎÀº ÃÊÇǸ¦ ²¨¸°´Ù. ³²ºÎÀÇ ÀϺΠÁö¹æ¿¡¼­, ±×°Íµµ Åä¼ÓÀû ÀÔ¸ÀÀ» Áö´Ñ »ç¶÷µéÀÌ Ãß¾îÅÁ¿¡³ª ³Ö¾î ¸Ô´Â ÀÌ»ó¾ß¸©ÇÑ ¿­¸Å Á¤µµ·Î ¿©±ä´Ù. ±×·¯´Ï ±× À̸§ µûÀ§¿¡ °ü½ÉÀÌ °¥ ¸®°¡ ¾ø´Ù. ±×·±µ¥ ÀϺ»À» º¸´Ï '»ê¼î'¶ó´Â °ÍÀÌ ÀÖ°í, ±×°ÍÂü ¹¦ÇÏ´Ù ½Í¾î '»êÃÊ, »êÃÊ' ÇÏ´Ù°¡ ÀÌÁ¦´Â Áß±¹ ¾²ÃÓ ¿ä¸® ¸Ô´Ù 'È­ÀÚ¿À'¸¦ ¹ß°ßÇÏ°í¼± 'Áß±¹ »êÃÊ'¶ó ÇÏ°í¡¦.
¸Å³â ´Ê¿©¸§À̸é ÀϺ» »óÀεéÀÌ Áö¸®»ê¿¡ ¿Â´Ù. ÃÊÇǸ¦ ¼ö¸Å(â¥Øâ)Çϱâ À§Çؼ­ÀÌ´Ù. 1§¸¿¡ 6000¿ø Á¤µµÀÇ Çæ°ª¿¡ °ÅµÖ °£´Ù. Çѱ¹ÀÎÀÌ ÇÏÂú°Ô ¿©±â´Ï ½Ò ¼ö¹Û¿¡ ¾ø´Ù. ÀϺ»¿¡¼­´Â ÀÌ Áö¸®»ê ÃÊÇǸ¦ ÃÖ»óÇ°À¸·Î ¿©±ä´Ù. ½Å¸ÀÀÌ Æ¯È÷ °­·ÄÇϱ⠶§¹®ÀÌ´Ù. ±×·¯µç ¸»µç, ¿ì¸®´Â ±×°Ô ÃÊÇÇÀÎÁö »êÃÊÀÎÁö ºÐ°£µµ ¸ø ÇÏ°í ÀÖÀ¸´Ï¡¦.





ÆäÀ̽ººÏ       ¹æ¸í·Ï      ¼öÁ¤ 2020-06-18 / µî·Ï 2019-03-26 / Á¶È¸ : 4175 (395)



¿ì¸®ÀÇ °Ç°­À» ÇØÄ¡´Â ºÒ·®Áö½ÄÀÌ ¾ø´Â ¾Æ¸§´Ù¿î ¼¼»óÀ» ²Þ²Ù¸ç ...  2009.12  ÃÖ³«¾ð


¡¡